2013-07-25

Nano scientists reach holy grail in label-free cancer marker detection: Single molecules

Nano scientists reach holy grail in label-free cancer marker detection: Single molecules

This achievement shatters the previous record, setting a new benchmark for the most sensitive limit of detection, and may significantly advance early disease diagnostics. Unlike current technology, which attaches a fluorescent molecule, or label, to the antigen to allow it to be seen, the new process detects the antigen without an interfering label. Stephen Arnold, university professor of applied physics and member of the Othmer-Jacobs Department of Chemical and Biomolecular Engineering, published details of the achievement in Nano Letters, a publication of the American Chemical Society.

In 2012, Arnold and his team were able to detect in solution the smallest known RNA virus, MS2, with a mass of 6 attograms. Now, with experimental work by postdoctoral fellow Venkata Dantham and former student David Keng, two proteins have been detected: a human cancer marker protein called Thyroglobulin, with a mass of just 1 attogram, and the bovine form of a common plasma protein, serum albumin, with a far smaller mass of 0.11 attogram. "An attogram is a millionth of a millionth of a millionth of a gram," said Arnold, "and we believe that our new limit of detection may be smaller than 0.01 attogram."

This latest milestone builds on a technique pioneered by Arnold and collaborators from NYU-Poly and Fordham University. In 2012, the researchers set the first sizing record by treating a novel biosensor with plasmonic gold nano-receptors, enhancing the electric field of the sensor and allowing even the smallest shifts in resonant frequency to be detected. Their plan was to design a medical diagnostic device capable of identifying a single virus particle in a point-of-care setting, without the use of special assay preparations.

At the time, the notion of detecting a single protein -- phenomenally smaller than a virus -- was set forth as the ultimate goal.

"Proteins run the body," explained Arnold. "When the immune system encounters virus, it pumps out huge quantities of antibody proteins, and all cancers generate protein markers. A test capable of detecting a single protein would be the most sensitive diagnostic test imaginable."

To the surprise of the researchers, examination of their nanoreceptor under a transmission electron microscope revealed that its gold shell surface was covered with random bumps roughly the size of a protein. Computer mapping and simulations created by Stephen Holler, once Arnold's student and now assistant professor of physics at Fordham University, showed that these irregularities generate their own highly reactive local sensitivity field extending out several nanometers, amplifying the capabilities of the sensor far beyond original predictions. "A virus is far too large to be aided in detection by this field," Arnold said. "Proteins are just a few nanometers across -- exactly the right size to register in this space."

The implications of single protein detection are significant and may lay the foundation for improved medical therapeutics. Among other advances, Arnold and his colleagues posit that the ability to follow a signal in real time -- to actually witness the detection of a single disease marker protein and track its movement -- may yield new understanding of how proteins attach to antibodies.

Arnold named the novel method of label-free detection "whispering gallery-mode biosensing" because light waves in the system reminded him of the way that voices bounce around the whispering gallery under the dome of St. Paul's Cathedral in London. A laser sends light through a glass fiber to a detector. When a microsphere is placed against the fiber, certain wavelengths of light detour into the sphere and bounce around inside, creating a dip in the light that the detector receives. When a molecule like a cancer marker clings to a gold nanoshell attached to the microsphere, the microsphere's resonant frequency shifts by a measureable amount.

The research has been supported by a grant from the National Science Foundation (NSF). This summer, Arnold will begin the next stage of expanding the capacity for these biosensors. The NSF has awarded a new $200,000 grant to him in collaboration with University of Michigan professor Xudong Fan. The grant will support the construction of a multiplexed array of plasmonically enhanced resonators, which should allow a variety of protein to be identified in blood serum within minutes.


Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


NXP Diodes Diodes Low Ohmic Resistors DIODES Transistors Discrete Semiconductor Transistors INTERSIL IC Chip Ferrite Beads NEC Diodes ST Diodes Cypress IC Thick Film Resistors Transistors Xilinx IC Ligitek LED Atmel IC About US Fairchild Semiconductor Transistors Bipolar Transistors Voltage Regulators Transistors Schottky Diodes Thin Film Resistors Chip Inductors NEC Transistors MOTOROLA IC Fast Recovery Diodes Zener Diodes Switches FAIRCHILD diodes Vishay resistors Infineon Technologies Transistors IR Diodes ALTERA IC Switching Diodes LINEAR IC HARRIS IC ROHM Resistors Resistor Networks Resistors TOSHIBA Diodes Microchip IC
http://www.suvsystem.com/a/4282.aspx

No comments:

Post a Comment